

Концепции ЦОД, как точка опоры для принятия решений. В помощь руководителям

> Игорь Дорофеев ООО «АйКорд»

Перед вами стоит задача создать ЦОД*

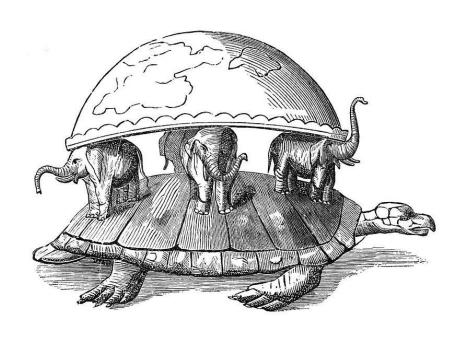
Каким он должен быть?

Какими критериями вы обычно пользуетесь при выборе решений?

Пожалуйста, ваши варианты

NB!

*) Здесь и далее под ЦОД понимается ФИЗИЧЕСКАЯ ИНФРАСТРУКТУРА ЦОД


Почему концепции?

КОНЦЕПЦИЯ (от лат. *conceptio* -- понимание, система), определенный способ понимания, трактовки каких-либо явлений, основная точка зрения, руководящая идея для их освещения; ведущий замысел, конструктивный принцип различных видов деятельности.

Большая советская энциклопедия

Термин «КОНЦЕПЦИЯ» не более чем название, которое отражает некое частичное или целостное видение как должен быть построен ЦОД

Почему возникают концепции?

Бурный рост ИТ-технологий, рынка и прикладных знаний

ЦОДы становятся массовым продуктом

Создание фундаментальных стандартов не целесообразно

Знания формируются в виде гибких концепций

Как представлены концепции?

Два основных подхода:

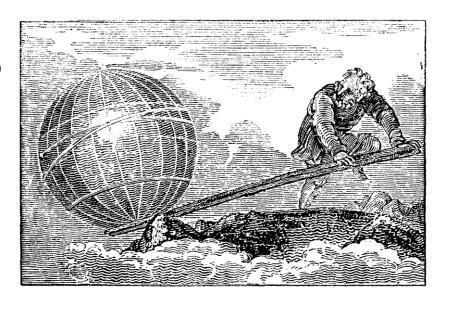
Формализованная детальная идея

Общая открытая идея

Стандарты

 формализованные знания и требования, создание физической инфраструктуры средней универсальной площадки

Характеристики ЦОД. Методы и метрики


 учет особенностей площадки и акцентирование требований или особенностей применимых к данному случаю

Необходимо применять оба представления!

Стандарты ЦОД

Реальные задачи не всегда соответствуют тому, что написано в стандартах, либо вообще таких стандартов не существует.

Если мы понимаем общую суть и дух проблемы создания ЦОД, то можем трактовать или применять или придумывать решения даже в случае нестандартных ситуаций.

«Дайте мне точку опоры и я переверну мир».

Архимед

Существующие на рынке концепции, безусловно, являются такими точками опоры при принятии решений, основным направлением в канве которого создается ЦОД

Какими стандартами вы пользуетесь при создании ЦОД?

Какие характеристики ЦОД наиболее популярны и востребованы?

Стандарты ЦОД

Отечественные стандарты

- CH 512-78
- РД 45.120-2000
- BHΠ 001-01
- комплексы стандартов в области связи

Зарубежные стандарты

- TIA-942-A
- BICSI 002-2011
- TIA-569-C
- Telcordia NEBS
- ASHRAE TC 9.9
- и прочие

Проблемы:

1. Отечественные стандарты не дают необходимую нормативную базу и используются применительно.

2. Положения зарубежных стандартов часто имеют закрытую логику.

Характеристики ЦОД. Классификация

По размерам/масштабу

- малые (5-20 стоек)
- средние (20-100 стоек)
- крупные (более 100 стоек)
- мега (более 1000 стоек)
- отдельно: мобильные

По функциональному назначению

- Корпоративные / ведомственные
- коммерческие / операторские

По характеристикам

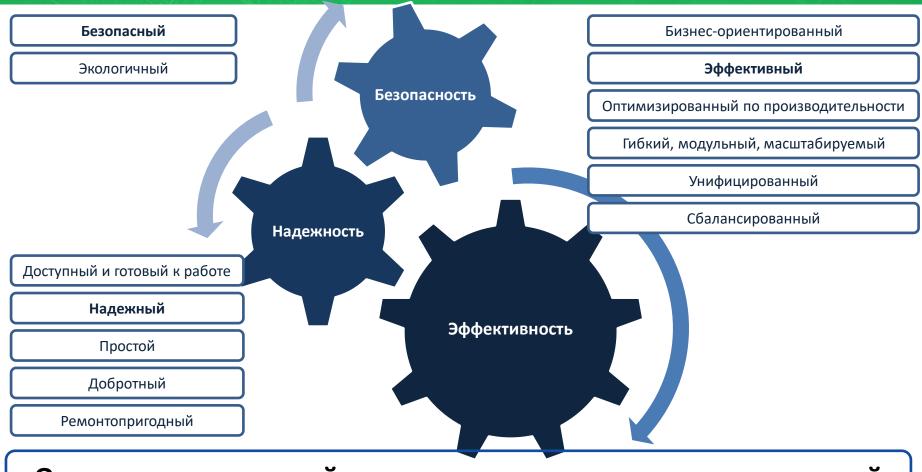
Оценка в стойках, кв.метрах или электрической мощности

Бизнес-функция

Рассмотрим более подробно

Характеристики ЦОД. Классификация

Рассмотрим типовое описание любого ЦОД на рынке



Пожалуйста, предложите пример ЦОД, который мы хотим классифицировать

Для любого ЦОД можно дать описание комбинацией из трех данных параметров, при этом для каждого из вариантов комбинаций могут возникать наиболее подходящие к данному случаю решения

Характеристики ЦОД. Концепции

Одно из представлений характеристик, открытое для дополнений

Задача поиска оптимума. Между показателями есть взаимная связь

Характеристики ЦОД. Концепции

Эффективность. Общие подходы

Бизнес-ориентированный

Эффективный

Оптимизированный по производительности

Гибкий, модульный, масштабируемый

Унифицированный

Сбалансированный

Ориентация на бизнес и ИТ-задачи, функциональное назначение

Финансовое планирование

Оптимизация затрат

Увеличение доходов и производительности

Прогнозирование деятельности

Пример. Ориентация на задачи и функциональное назначение ЦОД

Задачи и решения ЦОД разного функционального назначения значительно отличаются.

Типичная ошибка

Не надо подходить к созданию корпоративных ЦОД с принципами проектирования коммерческих ЦОД

Финансы, реальная потеря крупных денежных средств

Обеспечение жизни людей

Требуется высокая надежность

Бизнес-процессы обычного предприятия

Вычислительные комплексы

Допустима низкая надежность

Для определения параметров ЦОД важно понимать для каких бизнес-задач, обеспечения каких процессов создается ЦОД

Пример. Финансовое планирование

Бизнес-ориентированный

Капитальные затраты (СарЕх)

Эффективный

Оптимизированный по производительности

Гибкий, модульный, масштабируемый

Унифицированный

Сбалансированный

Операционные затраты (ОрЕх)

Возврат инвестиций (ROI)

Совокупная стоимость владения (ТСО)

СарЕх и ОрЕх, как правило, лежат на разных сторонах весов

Правильным критерием является поиск оптимума ROI, при этом к анализу добавляется доходная часть

Пример. Оптимизация затрат

Бизнес-ориентированный

Введение макропоказателей

Эффективный

Энергоэффективность

Оптимизированный по производительности

Консолидация

Гибкий, модульный, масштабируемый

Масштабируемость

Унифицированный

Модульность

Сбалансированный

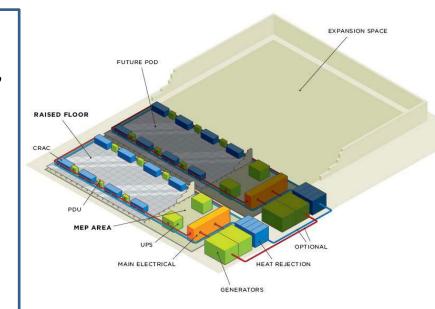
Типовые и готовые решения

Управляемость

и прочие методы

PUE - Power Usage Effectiveness

- введен The Green Grid в 2007 году, прорабатывается в ISO
- Контроль за расходованием электроэнергии (и затрат на оплату счетов)
- Стремление к PUE=1, верхняя граница все время снижается
- Четыре уровня измерений (0 и 1 UPS, 2 PDU, 3 Server)
- Год наблюдений
- Разные весовые коэффициенты для разных видов энергоносителей, в том числе при комбинированном энергоснабжении


Думать об энергоэффективности нужно только для больших ЦОД со значительным энергопотреблением!

Для малых ЦОД – нерентабельно

Пример. Масштабирование

Масштабирование осуществляется, не только по размеру, но и исходя из применяемых решений.

На практике, подходы и технологии оптимальные для создания разных по масштабу ЦОД могут отличаться друг от друга вплоть до противоположных.

Локальное горизонтальное масштабирование типовыми модулями

Источник: Gartner

Нельзя получить эффективный крупный ЦОД путем прямого масштабирования малых и средних площадок

Пример. Увеличение доходов и производительности

Бизнес-ориентированный

Эффективный

Оптимизированный по производительности

Гибкий, модульный, масштабируемый

Унифицированный

Сбалансированный

Экономические аспекты

• Модели продаж

Услуги ХааЅ

• и прочие

Технические аспекты

• Производительность ИТ-оборудования

• Виртуализация

• Укрупнение мощностей

• и прочие

DCP

ITUE

PUE/DCIE

xLF

x-EER

FVER

Метрики эффективной производительности

• Задача — получение максимальных параметров по производительности на каждый затраченный рубль/ватт энергии.

Пример. Прогнозирование деятельности

Бизнес-ориентированный

Эффективный

Оптимизированный по производительности

Гибкий, модульный, масштабируемый

Унифицированный

Сбалансированный

Этапность

3релость

Конверсия

и прочие методы

Data Center Maturity Model (DCMM)

- Модель зрелости ЦОД, т.е. соответствие передовым практикам в разрезе экономических показателей
- Level 0-5: от минимального до соответствующего 5-ти летнему прогнозу
- Анализ IT и Facility: Power, Cooling, Compute, Storage, Network, Management

Надежность. Основные подходы

Доступный и готовый к работе

Надежный

Простой

Добротный

Ремонтопригодный

Модель: надежность – доступность – ремонтопригодность (RAS)

Простота и добротность

Отказоустойчивые решения

Показатели надежности и метрики

Развитие эксплуатационных процедур

Время доступности (Uptime) VS Время простоя (Downtime)

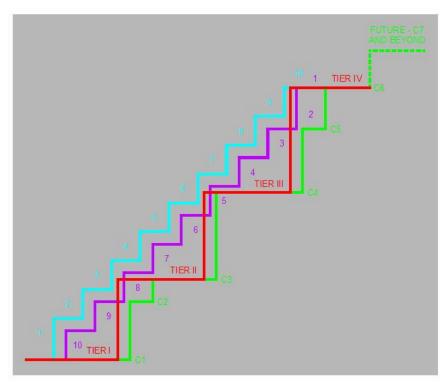
Стоимость часового простоя Промышленные Облачные, сетевые и виртуальные предприятия услуги 5,6 к\$/час 60-120 k\$/час Virgin Blue (бронирование билетов) 20 млн.\$ за 11 дней Среднее предприятие или > 75 k\$/час Консервативная оценка Gartner – 42 k\$/час Финансовые Размер потерь зависит от сферы и брокерские деятельности предприятий организации N млн.\$/час PayPal (платежная система) 7,2 млн.\$/час

Пример. Отказоустойчивые решения

Нештатная и аварийная ситуация (инциденты и отказы)

Отказоустойчивость и точки отказа

Резервирование (дублирование)


- Уровень резервирования
- Кратность резервирования
- Способы работы резервных элементов

Топологические решения достаточно простые, чтобы не удорожать проект Предполагают одиночный отказ

Пример. Показатели надежности и метрики

Метрики надежности:

- 9S
- Tier I-IV The Uptime Institute
- tier (?) 1-4 TIA-942-A
- F0-F4 BICSI
- Critically Levels Syska Hennesy
- STARS PTS Consulting
- различные клоны и вариации

Соответствие уровней Tier™ и Critically Levels™ Источник: Edward P Rafter, Tier IV Consulting Group

Цель:

Получить простые механизмы оценки и реализации

Пример. Развитие эксплуатационных процедур

Эксплуатационные метрики

- Большими ЦОД сложно управлять с точки зрения «здравого смысла», требуется формализация процедур
- Операционная устойчивость, от «как строить» к «как эксплуатировать»
- Рассматриваемые аспекты: персонал, квалификация, обучение, процедуры, организация, планирование, прогнозирование, сертификация, управление, гарантия и сервис, физическая инфраструктура, отношения с разными сторонами и т.д.

Безопасность. Основные подходы

Безопасный

Экологичный

Обеспечение безопасности

- Пожарная безопасность
- Физическая безопасность
- Информационная безопасность
- Безопасность для пользователей
- Безопасность для персонала и посетителей

Безопасное влияние на окружающую среду

- «Зеленые» технологии
- Возобновляемые источники энергии
- Повторное использование ресурсов
- Снижение выбросов
- Энергосбережение

Пример. Некоторые практические методы

Безопасный

Формирование моделей угроз

Экологичный PCI DSS

MICE

PUE, WUE, CUE

LEED и прочие «зеленые» сертификации

Основным движителем в развитии идеологии ЦОД являются ИТ-технологии и их применение в бизнесе

• Экономический фактор при этом является определяющим

Хороший и надежный ЦОД можно построить без следования «модным» идеям и метрикам

- Важно знать и разбираться в исходных данных, которые привели к тем или иным положениям концепций и стандартов
- Применение стандартных концепций в случае нестандартных задач может быть существенно ограничено
- По настоящему революционные решения не будут опираться на стандарты

Докладчик и автор семинара — **Игорь Дорофеев**

- член Ассоциации участников отрасли ЦОД
- консультант и технический тренер по ЦОД
- генеральный директор ООО «АйКорд»

Контакты:

dorofeev@dcunion.ru

Материалы подготовлены в рамках деятельности рабочей группы №3 Ассоциации участников отрасли ЦОД в составе:

И. Дорофеев, А. Ласый, А. Дегтярев, Ф. Клименко, И. Нестеров

© 2014-2015